A Self-Organizing Multimodal Multi-Objective Coati Optimization Algorithm

نویسندگان

چکیده

The Coati Optimization Algorithm (COA) has emerged as a prominent evolutionary algorithm renowned for its efficacy in addressing real-world problems. Its wide-ranging applicability across diverse domains is testament to exceptional performance and versatility. Compared other algorithms, COA been proven possess excellent global local search capabilities. This paper introduces novel self-organizing multimodal multi-objective (MMOCOA) designed specifically tackle proposed aims effectively handle the complexities associated with such problems by incorporating mechanisms into optimization framework. Primarily, MMOCOA utilizes speciation method primary approach identify Pareto optimal solutions. tactic can establish stable niches continually updates them actively preserve Furthermore, an improved self-organization mechanism enhance generation speed of niches. Additionally, incorporates non-dominated sorting specialized crowding distance technique diversity both decision objective space. To assess effectiveness MMOCOA, this study presents comprehensive evaluation using eleven test functions. benchmarked against five state-of-the-art algorithms. experimental results highlight superior it demonstrates capability discover larger number solutions compared algorithms under consideration.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Organizing Maps for Multi-Objective Optimization

This work introduces novel recombination and mutation operators for multi-objective evolutionary algorithms using self-organizing maps in the context of Pareto optimization. The self-organizing map is actively learning from the evolution path in order to adapt the mutation step size. Standard selection operators can be used in conjunction with these operators.

متن کامل

A Novel Multi-Objective Self-Organizing Migrating Algorithm

In the paper, a novel stochastic Multi-Objective Self-Organizing Migrating Algorithm (MOSOMA) is introduced. For the search of optima, MOSOMA employs a migration technique used in a single-objective Self Organizing Migrating Algorithm (SOMA). In order to obtain a uniform distribution of Pareto optimal solutions, a novel technique considering Euclidian distances among solutions is introduced. MO...

متن کامل

Multi-Objective Self-Organizing Migrating Algorithm: Sensitivity on Controlling Parameters

In this paper, we investigate the sensitivity of a novel Multi-Objective Self-Organizing Migrating Algorithm (MOSOMA) on setting its control parameters. Usually, efficiency and accuracy of searching for a solution depends on the settings of a used stochastic algorithm, because multi-objective optimization problems are highly non-linear. In the paper, the sensitivity analysis is performed exploi...

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in computer, signals and systems

سال: 2023

ISSN: ['2371-882X', '2371-8838']

DOI: https://doi.org/10.23977/acss.2023.070703